8 research outputs found

    Efficient graph cuts for unsupervised image segmentation using probabilistic sampling and SVD-based approximation

    Get PDF
    The application of graph theoretic methods to unsupervised image partitioning has been a very active field of research recently. For weighted graphs encoding the (dis)similarity structure of locally extracted image features, unsupervised segmentations of images into coherent structures can be computed in terms of extremal cuts of the underlying graphs. In this context, we focus on the normalized cut criterion and a related recent convex approach based on semidefinite programming. As both methods soon become computationally demanding with increasing graph size, an important question is how the computations can be accelerated. To this end, we study an SVD approximation method in this paper which has been introduced in a different clustering context. We apply this method, which is based on probabilistic sampling, to both segmentation approaches and compare it with the Nyström extension suggested for the normalized cut. Numerical results confirm that by means of the sampling-based SVD approximation technique, reliable segmentations can be computed with a fraction (less than 5%) of the original computational cost

    Image Partitioning based on Semidefinite Programming

    Full text link
    Many tasks in computer vision lead to combinatorial optimization problems. Automatic image partitioning is one of the most important examples in this context: whether based on some prior knowledge or completely unsupervised, we wish to find coherent parts of the image. However, the inherent combinatorial complexity of such problems often prevents to find the global optimum in polynomial time. For this reason, various approaches have been proposed to find good approximative solutions for image partitioning problems. As an important example, we will first consider different spectral relaxation techniques: based on straightforward eigenvector calculations, these methods compute suboptimal solutions in short time. However, the main contribution of this thesis is to introduce a novel optimization technique for discrete image partitioning problems which is based on a semidefinite programming relaxation. In contrast to approximation methods employing annealing algorithms, this approach involves solving a convex optimization problem, which does not suffer from possible local minima. Using interior point techniques, the solution of the relaxation can be found in polynomial time, and without elaborate parameter tuning. High quality solutions to the original combinatorial problem are then obtained with a randomized rounding technique. The only potential drawback of the semidefinite relaxation approach is that the number of variables of the optimization problem is squared. Nevertheless, it can still be applied to problems with up to a few thousand variables, as is demonstrated for various computer vision tasks including unsupervised segmentation, perceptual grouping and image restoration. Concerning problems of higher dimensionality, we study two different approaches to effectively reduce the number of variables. The first one is based on probabilistic sampling: by considering only a small random fraction of the pixels in the image, our semidefinite relaxation method can be applied in an efficient way while maintaining a reliable quality of the resulting segmentations. The second approach reduces the problem size by computing an over-segmentation of the image in a preprocessing step. After that, the image is partitioned based on the resulting "superpixels" instead of the original pixels. Since the real world does not consist of pixels, it can even be argued that this is the more natural image representation. Initially, our semidefinite relaxation method is defined only for binary partitioning problems. To derive image segmentations into multiple parts, one possibility is to apply the binary approach in a hierarchical way. Besides this natural extension, we also discuss how multiclass partitioning problems can be solved in a direct way based on semidefinite relaxation techniques

    Semidefinite Clustering for Image Segmentation with A-priori Knowledge

    No full text
    Abstract. Graph-based clustering methods are successfully applied to computer vision and machine learning problems. In this paper we demonstrate how to introduce a-priori knowledge on class membership in a systematic and principled way: starting from a convex relaxation of the graph-based clustering problem we integrate information about class membership by adding linear constraints to the resulting semidefinite program. With our method, there is no need to modify the original optimization criterion, ensuring that the algorithm will always converge to a high quality clustering or image segmentation.

    Binary Partitioning, Perceptual Grouping, and Restoration with Semidefinite Programming

    Get PDF
    We introduce a novel optimization method based on semidefinite programming relaxations to the field of computer vision and apply it to the combinatorial problem of minimizing quadratic functionals in binary decision variables subject to linear constraints
    corecore